Comparison of 3D-Var and LETKF in an Atmospheric GCM: SPEEDY

Catherine Sabol
Kayo Ide
Eugenia Kalnay, Takemasa Miyoshi

Weather Chaos, UMD
9 April 2012
Outline

• SPEEDY
• Formulation
• Single Observation Experiments
• Observation Network Experiments
• Long-term Instabilities and Biases
• Summary and Future Work
SPEEDY (Molteni 2003)

• Model Description
 – Simplified Parameterizations, primitive-Equation DYNAMICS
 – Global atmospheric general circulation model of intermediate complexity
 – T30 spectral resolution – 96 x 48 grid points
 – 7 vertical levels (sigma coordinates)

• Experimental Setup
 – Output every 6 hours (Miyoshi 2005)
 – Experiments begin on January 1st, 1982 after 1 year of spin-up

<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Observation Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1 m/s</td>
</tr>
<tr>
<td>v</td>
<td>1 m/s</td>
</tr>
<tr>
<td>T</td>
<td>1 K</td>
</tr>
<tr>
<td>q</td>
<td>10^{-4} kg/kg</td>
</tr>
<tr>
<td>p_s</td>
<td>100 Pa</td>
</tr>
</tbody>
</table>
Observation Networks

Dense Observation Network (1056 Stations)

Sparse Observation Network (264 Stations)

Realistic Observation Network (415 Stations)
3D-Var Formulation with Preconditioning

The analysis is obtained by finding the minimum (δv^a) of the cost function:

$$J(\delta v) = \frac{1}{2} \delta v^T \delta v + \frac{1}{2} \left(d^{ob} - H U_x \delta v \right)^T R^{-1} \left(d^{ob} - H U_x \delta v \right)$$

$$x^a = x^b + U_x \delta v^a$$

- x^a – analysis (\mathbb{R}^N)
- x^b – background (\mathbb{R}^N)
- d^{ob} – innovation (\mathbb{R}^L)
- H – linear observation operator ($\mathbb{R}^{L \times N}$)
- R – observation error covariance matrix ($\mathbb{R}^{L \times L}$)
- δv – preconditioned control vector (\mathbb{R}^N)

$$\delta x = U_x \delta v$$

$$B_x = U_x U_x^T \quad U_x = S_x F$$

- S_x – background error standard deviation ($\mathbb{R}^{N \times N}$)
- F – spatial correlations ($\mathbb{R}^{N \times N}$)

(recursive filter, Purser 2003a)
Local Ensemble Transform Kalman Filter (Hunt et al 2007)

- Analysis is computed locally for each grid point

\[x_m^a = \bar{x}^a + \hat{X}^a \]

- ensemble mean \((\mathbb{R}^N)\)

\[\bar{X} - \text{ensemble mean} \]

\[\hat{X} = \{x_1 - \bar{x}, \ldots, x_M - \bar{x}\} - \text{ensemble spread} \]

\[\bar{x}^a = \bar{x}^b + \hat{X}^b \bar{w} \]

where

\[\bar{w} = (\tilde{P}^a)^{-1} (\hat{Y}^b)^T R^{-1} \text{d}^{ob} \quad (\mathbb{R}^M) \]

\[\tilde{P}^a = (\tilde{P}^b)^{-1} + (\hat{Y}^b)^T R^{-1} \hat{Y}^b \quad (\mathbb{R}^{M\times M}) \]

\[\hat{X}^a = \hat{X}^b W^a \]

where

\[W^a = (\tilde{P}^a)^{1/2} \quad (\mathbb{R}^{M\times M}) \]

\[\tilde{P}^b = (k - 1)^{-1} I \quad (\mathbb{R}^{M\times M}) \]
The horizontal velocity, V, can be broken down into its balanced and unbalanced components:

$$ V = rV^g + V^u $$

where

V^g – geostrophic wind

$$ f k \times V^g = -RTV \ln(p_s) - \nabla \varphi(T) $$

r – linear regression coefficient for V and V^g

$$ r = \frac{E[(\varepsilon)(\varepsilon^g)^T]}{E[(\varepsilon^g)(\varepsilon^g)^T]} $$

ε – difference in 18 and 24 hr forecasts of V verifying at the same time (NMC method, Parrish and Derber 1992)

r is computed so that V^u and V^g are statistically uncorrelated
To apply to 3D-Var, we transform the increment:

\[\delta x = G U_z \delta z \]

where

- **G** – linearized geostrophic transformation
- **U_z** – background error for the \(\delta z \) rather than \(\delta x \)

The cost function becomes:

\[
J(\delta z) = \frac{1}{2} \delta z^T \delta z + \frac{1}{2} \left(d^{ob} - H G U_z \delta z \right)^T R^{-1} \left(d^{ob} - H G U_z \delta z \right)
\]
To apply to LETKF, we transform the ensemble to include the unbalanced wind:

$$x_m = g(z_m)$$

The analysis is performed on z rather than x:

$$\bar{z}^a = \bar{z}^b + \hat{Z}^b W \quad \hat{Z}^a = \hat{Z}^b W^a$$

Variable localization

Removes correlation between V^u and (T, p_s)

Employed through choice of observations used in local calculations
Single Observation - $T(\text{sig}=0.51)$

3D-Var,
Without Constraint

3D-Var,
With Constraint
Single Observation - $T(\text{sig}=0.51)$

LETKF, Without Constraint

LETKF, With Constraint
Comparison: 3D-Var

3D-Var
No Constraint

3D-Var
Constraint

Analysis RMSE, T(sig=0.51), 3D-Var, No Constraint

Analysis RMSE, T(sig=0.51), 3D-Var, Geostrophic

Dense
Sparse
Realistic
Free Run
Comparison: 3D-Var vs. LETKF

2-month 3D-Var and LETKF

Analysis RMSE for T(sig=0.51), Dense Obs Network

Analysis RMSE for T(sig=0.51), Sparse Obs Network

Analysis RMSE for T(sig=0.51), Realistic Obs Network

15-year Dense
No Constraint

3D-Var, No Geo
3D-Var, Geo
LETKF, No Geo
LETKF, Geo
Comparison: 3D-Var vs. LETKF

3D-Var, No Geo
3D-Var, Geo
LETKF, No Geo
LETKF, Geo

- Dense
- Sparse
- Realistic
Analysis Bias, T(sig=0.51), 02/01-03/01

Dense Network

No Constraint

Constraint

3D-Var

LETKF
Effect of Observation Networks

Randomizing Observation Locations for the 3D-Var, Dense, Geostrophic Constraint Case

Analysis, T(sig=0.51), Dense, Geo, 1982/08/09 00Z

Analysis RMSE for T(sig=0.51), 3D-Var, Dense, Geo

Regularly Spaced
Irregularly Spaced
Effect of Observation Networks

3D-Var, Sparse Network, Geostrophic Constraint

Analysis

Analysis, T(sig=0.51), Sparse, Geo, 1982/04/12 00z

Analysis Bias

Analysis Bias, T(sig=0.51), Sparse, Geo, 02/01–03/01
Bias: Spatial Pattern

Stationary waves

Wave length: 4 grid points

Observation locations occur between the crests and the troughs
There is a significant warm temperature bias, highest in the upper troposphere.
Why Assimilation Cannot Correct

Innovation Analysis

Increment
What Can We Do?

- Irregular observation locations
- Bias correction
- Change the length scale
- Reduce noise:
 - Digital filter
 - Spatial
 - Temporal not effective at removing biases stationary in time
 - Smoothing the background error extends the assimilation
 - Not assimilating q observations above the 4th model level
 - The value of q is equal or less than the observation error
What Can We Do?

Tune the Background Error
- Too small – Observations are not taken seriously enough, no convergence
- Too large – Observations are taken too seriously – sharp, large increments increase noise

![Graph of Analysis RMSE for T(sig=0.51), Dense, Geo, Tuning B](image1)

![Graph of Analysis RMSE for T(sig=0.51), Dense, Geostrophic](image2)
Summary

- 3D-Var and LETKF with and without the geostrophic constraint are implemented in the SPEEDY model.
- For each observational network and constraint option, LETKF outperforms 3D-Var.
- Biases and stability issues were encountered for the regularly spaced network cases when using the geostrophic constraint.
 - Currently under investigation.
 - Can be resolved by not using regularly spaced observations.
- Future work:
 - Hybrid 3D-Var/LETKF for SPEEDY
 - Evaluate for usefulness in the creation of a new reanalysis data set.
Thank You